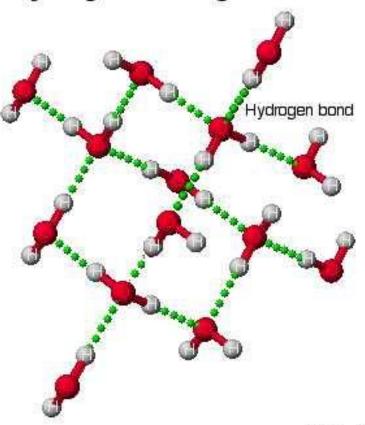

# Biochemistry: Water and Organic Compounds

Modern Biology Chapter 3

## Water

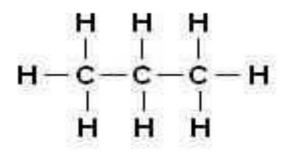
#### Water Molecule



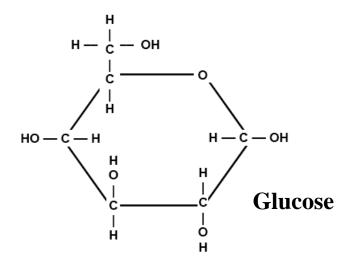

- Formed by covalent bonds (atoms share electrons)
  - Atoms don't share equally → water is POLAR
    - Oxygen end is slightly negative (O is electron hog)
    - Hydrogen ends are slightly positive
    - □ POLARITY is why water is a good solvent
      - Dissolves lots of different compounds

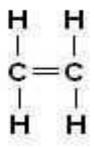
# Hydrogen Bonding in Water

- Polarity causes water to be attracted to each other
- ☐ H-bond: attraction that holds water molecules together
- Responsible for cohesion (sticking together) that produces surface tension
  - Cohesion and adhesion (attraction between unlike substances) responsible for capillarity (water moves up through stems)
- □ Water has to gain/lose lots of energy to change temp.
  - This energy initially goes into breaking H-bonds
  - This is why a pot of water on the stove isn't hot right away


#### Hydrogen Bonding in Water

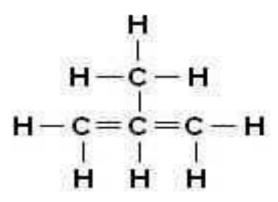



# Carbon Compounds


- Organic compounds
  - Contain carbon atoms covalently bonded to each other and to other elements (H, O, N, usually)
- □ Carbon has 4 electrons in its outer E-level
  - Needs 8 to be stable...shares it's electrons with other atoms
- Able to form straight chains, branched chains, or rings

# Examples of Carbon bonds




#### **Propane**





#### Ethylene

(plant hormoneripens fruit)

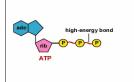


#### 2-methylpropane

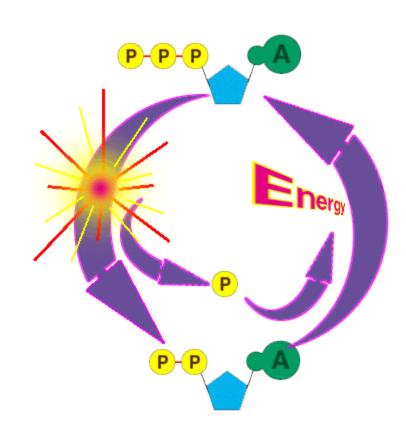
(used in refrigeration and petrochemical industry)

# Functional Groups

- □ Cluster of atoms that influence the properties of the molecule they are attached to.
  - Ex: -OH (hydroxl group)
    - □ Alcohols contain hydroxyl groups
    - Makes alcohols polar
      - Allows them to dissolve in water, have H-bonds like water

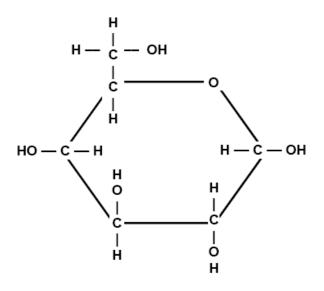

## Carbon Molecules

- Monomers
  - Small and simple; single building block
- Polymers
  - Made of repeated, linked monomers
- Macromolecule
  - Made of linked polymers


- Condensation Rxn
  - Links monomers together
  - AKA dehydration synthesis
  - Forms water
- □ Hydrolysis Rxn
  - Uses water to break polymers apart

# Condensation/Hydrolysis

## **ATP**




- AdenosineTriphosphate
  - Energy molecule used by the body
  - Broken down into ADP (releases P)
  - $\blacksquare$  ADP + P  $\rightarrow$  ATP
  - Continuous Cycle



# Carbohydrates

- □ Made of C, H, O
- □ Ratio of H to O is 2:1
- □ Sugars!
- Used for quick energy
  - Monosaccharides
    - Building blocks of all carbs
    - $\Box$  (CH<sub>2</sub>O)<sub>n</sub> is generic formula
    - Simple sugars
    - □ Most common are glucose, fructose, galactose
      - Isomers: same formula, different structure



# Carbohydrates

- Disaccharides
  - Formed from 2 monosaccharides
    - Condensation reaction
- Polysaccharides
- Ex: sucrose

  H OH glycosidic bond OH H

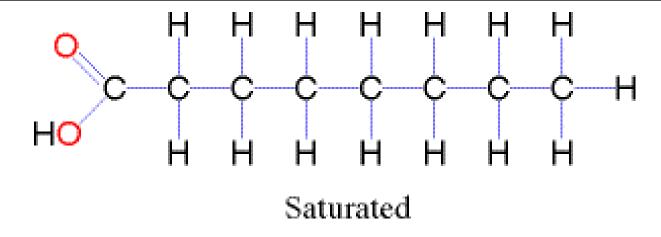
  α-Glucose β-Fructose

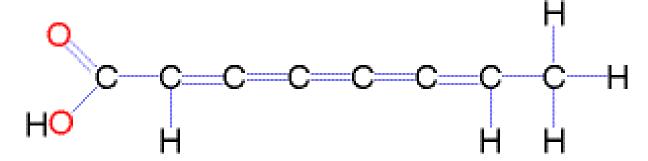
CH<sub>2</sub>OH

Sucrose has the molecular formula C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>

Sucrose

CH<sub>2</sub>OH


ĊH<sub>2</sub>OH


- Formed from 3+ monosaccharides
  - Condensation reaction
    - Glycogen: storage in animals (used for energy) \
    - Starch: storage in plants
    - Cellulose: in plant cell walls (gives them rigidity, 'crunch')

- □ Fats!
- □ Large, non-polar; do not dissolve in water
- □ Have more C, H than O
- □ Responsible for storing energy



- □ Fatty Acids
  - Building blocks of lipids
  - Straight carbon chain with carboxyl group (COOH) on one end (makes that end polar)
  - Carboxyl end "head" = hydrophilic
    - □ Water-Loving
  - Carbon chain "tail" = hydrophobic
    - Water-Fearing
  - Can be Saturated or Unsaturated
    - □ Saturated: all C-C bonds are single bonds (is "full" of H's)
    - □ Unsaturated: contains some double bonds





Unsaturated

- Triglycerides
  - 3 Fatty Acids attached to 1 Glycerol molecule
    - □ Saturated: solid at room temp (shortening)
    - Unsaturated: liquid at room temp (oils, found in plant seeds/fruits)
- Phospholipids
  - 2 FA's attached to 1 Glycerol
    - Major component of cell membrane (lipid bilayer)

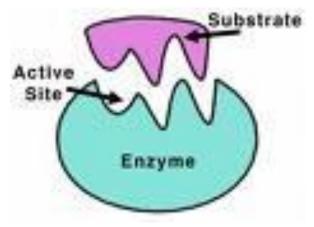
- Waxes
  - Waterproof
  - Form protective coating on plant leaves
- □ Steroids
  - 4 fused carbon rings w/ functional groups
  - Hormones
    - Cholesterol
    - □ Testosterone
    - □ Etc.

#### **Proteins**

- □ Made of C, H, O, and N
- Building blocks are Amino Acids
  - Amino Acids (20) are almost identical
    - □ Difference is the R-group (functional group)
- □ Di-peptide: chain of 2 Amino Acids
- □ Polypeptide: lots of AA's linked together
- □ Bond that holds AA's together is peptide

  bond

  Peptide

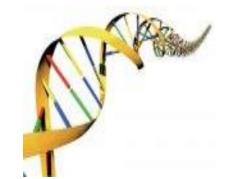

  bond

## **Proteins**

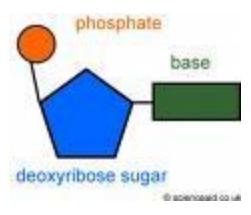
Amino Acid Structure

# Enzymes

- Proteins
- □ Act as catalyst for many reactions that occur in the body
- □ Substrate: what the enzyme acts on
- □ Product(s): what is formed from the rxn




# Enzymes


- □ Are not used up during the reaction
- □ Are not changed during the reaction
  - Can do the job again and again
- Lock and Key fit
  - Specific shape, must fit perfectly for rxn to occur
- □ Enzymes can be denatured (destroyed) when:
  - Change in temperature (too high)
  - Change in pH

## Nucleic Acids

- Used by cells to store hereditary information
  - DNA
    - Deoxyribonucleic acid
  - RNA
    - Ribonucleic acid



- Made of building blocks called nucleotides
  - 5-carbon sugar
  - Phosphate group
  - Nitrogen base

